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Previous research in "nite element formulation of #exible mechanisms usually neglected
high order terms in the strain-energy function. In particular, the quartic term of the
displacement gradient is always neglected due to the common belief that it is not important
in the dynamic analysis. In this paper, we show that this physical intuition is not always
valid. By retaining all the high order terms in the strain-energy function the equations of
motion naturally become non-linear, which can then be solved by the Newmark method. In
the low-speed range it is found that the dynamic responses predicted by non-linear and
linear approaches indeed make no signi"cant di!erence. However, when the rotation speed
increases up to about one-"fth of the fundamental bending natural frequency of the
connecting rod, simpli"ed approaches begin to incur noticeable error. Speci"cally, for
a connecting rod with a slenderness ratio of 0)01 the conventional simpli"ed approaches
overestimate the vibration amplitude almost 10-fold when the rotation speed is comparable
to the fundamental natural frequency of the connecting rod. Therefore, non-linear "nite
element formulation taking into account the complete non-linear strain is needed in
analyzing high-speed #exible mechnisms with slender links.

( 2001 Academic Press
1. INTRODUCTION AND STRAIN ENERGY

Finite element methods have been widely used in analyzing the dynamic response of #exible
mechanisms and robotic manipulators. Some comprehensive surveys can be found in
Erdman and Sandor [1], Lowen and Jandrasits [2], and Thompson and Sung [3]. The
formulation procedure consists of deriving kinetic energy and strain energy of each element,
using shape functions to approximate the displacement "eld, applying Hamilton's principle
to obtain the discretized equations of motion of the element, and "nally assembling the
elements appropriately to obtain the global equations of motion. Beam elements are
commonly used in modelling the members of linkages.

Among numerous types of linkages, slider-crank mechanism may be the simplest and
most commonly used in practice. Figure 1 shows a typical slider-crank mechanism with
rigid crank a and #exible connecting rod ¸. The rigid crank rotates with constant speed X.
The cross-sectional area, mass density, and Young's modulus of the elastic connecting rod
are A, o, and E respectively. XO> is an inertial frame with its origin attached to the center of
the rotating crank. xAy is a moving frame with x-axis passing through the two ends of the
connecting rod before deformation. u (x, t) and v(x, t) denote the axial and transverse
displacements of the neutral axis of the connecting rod. When the mechanism is in
022-460X/01/380389#14 $35.00/0 ( 2001 Academic Press



Figure 1. Schematic diagram of a slider-crank mechanism.
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operation the connecting rod is in general subject to both axial and transverse forces. As
a consequence, the displacements u and v are coupled.

To correctly model the coupling between axial vibration and transverse de#ection in
analysis, non-linear strain measure has to be used in deriving the strain energy. For
instance, if the Euler}Bernoulli beam model is adopted, the axial strain of a point (x, y) in
the connecting rod can be written as
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Di!erent approaches have been adopted in the literature to simplify equation (2). First of
all, if linear strain (neglecting 1

2
v2
,x

in equation (1)) is used, there will be no coupling between
axial and transverse vibrations. This simple approach has been adopted by Bahgat and
Willmert [4], Midha et al. [5], Sunada and Dubowsky [6], Yang and Sadler [7], and Fung
and Chen [8].

The second approach is to use the non-linear strain as given in equation (1), but ignore
the quartic term 1

4
v4
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in equation (2). Furthermore, the axial force P (x) is used to replace
EAu
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, and equation (2) is rewritten as
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The strain energy is then a function of quadratic terms of displacement gradients, and the
resulting equations of motion are linear in terms of u and v. In this formulation, the axial
displacement will not be a!ected by the transverse de#ection and can be calculated "rst. The
transverse de#ection will then be in#uenced by the axial vibration. This is a popular
approach in many "nite element textbooks, and in the #exible mechanism research
community as well, for instance, see Nath and Ghosh [9], Cleghorn et al. [10], Turcic and
Midha [11], and Thompson and Sung [12]. Sometimes it is called a geometrically
non-linear approach [3].
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It is commonly believed that the quartic term 1
4
v4
,x

is not important in the dynamic
analysis of #exible slider-crank mechanism. However, whether this intuition is valid or not
has never been examined before. In the present formulation, we retain all the high order
terms in the strain-energy function. The equations of motion become non-linear in terms of
the transverse de#ection v. If the equations are put in the conventional matrix form the
sti!ness matrix will contain unknown v, and an iterative method is required to calculate the
response. In this paper, the Newmark method is used for integration. Crank rotation speed
and slenderness ratio of the connecting rod are two important parameters whose e!ects on
the accuracy of various approaches will be examined closely. It is found that the
conventional impression regarding the negligibility of the quartic term is not valid. In
particular, neglecting the quartic term results in considerable error for links with small
slenderness ratio when the crank speed is over one-"fth the fundamental natural frequency
of the connecting rod. The e!ect of slider mass on the extension of the connecting rod is also
studied in detail.

2. KINETIC ENERGY

Referring back to Figure 1 the position vector R of a point in the connecting rod
measured from the pivot O can be written as

R"ae
r
#(x#u!yv

,x
)e

i
#(y#v)e

j
, (4)

where (e
r
, eh) and (e

i
, e

j
) are rotating base vectors attached to points O and A respectively.

The kinetic energy ¹
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of the connecting rod is
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The kinetic energy of the slider ¹
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is
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where m
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are the mass and velocity of the slider,
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where / is the angle between the x-axis and X-axis, and h is the rotation angle of the crank.
The kinetic energy of the rigid crank will not enter the equations of motion and is ignored in
the formulation.

3. FINITE ELEMENT FORMULATION

We divide the connecting rod into n elements of equal length l"¸/n. The two nodes of
the ith element are nodes i and i#1 respectively. Within this element we assume that the
displacements u, v, and slope t of the neutral axis can be interpolated in the following
manner:
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where shape function vectors MN
u
N, MN

v
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are de"ned as
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N, MNtN are linear, cubic, and quadratic functions of x, respectively, and are

detailed in Appendix A. In terms of the nodal vector the kinetic energy and strain energy of
the connecting rod can be expressed as
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where the kinetic energy and strain energy in element i are
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The associated matrices and vectors are given in Appendix B. By applying Hamilton's
principle
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we can obtain the equation of motion of the ith element as
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It is noted that in equation (24) we assume that damping is proportional to the sti!ness
matrix. For the nth element which is attached to the slider, the displacements u

n`1
and v

n`1
are constrained in the following manner [8]:
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As a consequence, some of the matrices in equation (20) for the nth element are modi"ed as
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Matrices [m
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], and vectors Mm
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N are given in Appendix B.
The above formulation taking into account the high order term in the strain-energy

function is called approach (A) in this paper. If the quartic term 1
4
v4
,x

is neglected in equation
(1), then the matrix [k

vvvv
] will disappear in equation (20). We call this approach (B).

Furthermore, if linear strain is assumed in equation (1), the term [k
Pvv

] (sometimes called
geometric sti!ness matrix in the literature [11]) in equations (22) and (28) will also
disappear. We call this approach (C).

After deriving the equation of motion (20) for each element, we can assemble the elements
by enforcing compatibility on the displacements and slopes at each node. It is noted that in
assembling the global equations we treat the unknowns in matrix [k

non
] as known

constants. Finally, the global equations of motion are obtained in the form
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where MQN is the global nodal vector.

4. NEWMARK METHOD

The Newmark method [13] is particularly useful in integrating non-linear equation (30).
We denote the acceleration, velocity, and displacement at time t
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where Dt is the time increment, and b and c are two constants. In this paper, we choose
b"0)25 and c"0)5. After obtaining the predictors we can calculate Ma; N
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Finally Md< N
m`1

and Mv; N
m`1

can be obtained from

Md< N
m`1

"Md3 N
m`1

#bDt2Ma; N
m`1

, (38)

MvN
m`1

"Mv8 N
m
#cDtMa; N

m`1
. (39)

5. CONVERGENCE TEST

In presenting the calculation results the following dimensionless parameters (with
asterisk) are used:
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r is the radius of gyration of the cross-section and e is the slenderness ratio of the connecting
rod. We "rst study the low-speed case X*"0)1. Figure 2 shows the transverse de#ection v*
at the middle point of the connecting rod with zero initial conditions. The results from
approaches (A), (B), and (C) are presented for comparison. The parameters used in Figure 2
are a*"0)1, e"0)01, m*

s
"0)5, and k*"0)5. The time increment Dt* is set to be equal to
Figure 2. Transverse de#ection v* at X*"0)1 from three di!erent approaches. Four elements are used in all
three approaches. a*"0)1, e"0)01, m*

s
"0)5, and k*"0)5.
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one-hundredth of the period of the crank rotation. The results from two and four elements
are almost indistinguishable in all three approaches. Furthermore, the e!ects of neglecting
the quartic term or using linear strain are almost negligible in the low-speed case.

Figure 3 shows the results of the high-speed case X*"0)8 obtained by approach (A) with
di!erent numbers of elements used. It is observed that 16 elements are needed to achieve
Figure 3. Convergence test for complete non-linear strain approach (A) at high speed X*"0)8. 16 elements are
needed to achieve satisfactory convergence. a*"0)1, e"0)01, m*

s
"0)5, and k*"0)5.

Figure 4. Comparison of transient responses at high speed X*"0)8 from approaches (A), (B), and (C). a*"0)1,
e"0)01, m*

s
"0)5, and k*"0)5.
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satisfactory convergence. For 16-element division, the results from dividing the crank
rotation period into 100 and 200 intervals make no di!erence. On the other hand, for
approaches (B) and (C), four elements are again su$cient for satisfactory convergence even
in the high-speed case.

In Figure 4 we compare the transient responses calculated by approaches (A), (B), and (C).
Four elements are used in approaches (B) and (C), and 16 elements are used in (A). First of all,
the e!ect of neglecting [k

Pvv
] (approach (C)) becomes noticeable compared to the result

from approach (B), especially when the slider mass is increased. Actually for approach (C)
the slider mass has no e!ect on the transverse de#ection because axial force has no in#uence
on the transverse vibration. More importantly, the amplitude of the response from complete
non-linear strain approach (A) is about one-tenth of those predicted by approaches (B) and
(C). In other words, neglecting the quartic term may be inadequate in predicting the
dynamic response of #exible mechanisms at high speed. In the following section, we
continue to examine the e!ects of the quartic term on the steady state response. In each
study, 16 elements are used for approach (A), and 4 elements are used for approaches (B)
and (C).

6. STEADY STATE RESPONSE

6.1. SLENDERNESS RATIO

Figure 5 shows the steady state amplitude at the middle point of the connecting rod as
a function of slenderness ratio e. The parameters chosen are a*"0)1, m*

s
"0)5, and

k*"0)5. The results from X*"0)1 (dashed lines) and X*"0)8 (solid lines) are plotted in
the same "gure for comparison. For low speed X*"0)1, the three di!erent approaches
produce almost the same result. For high speed X*"0)8, on the other hand, neglecting the
Figure 5. Steady state amplitude v* as a function of slenderness ratio e for X*"0)1 (dashed lines) and X*"0)8
(solid lines). a*"0)1, m*

s
"0)5, and k*"0)5. The inset shows the almost linear relations between log v* and log e.



Figure 6. Steady state amplitude v* as a function of X* for e"0)01. (solid lines) and e"0)1 (dashed lines).
a*"0)1, m*

s
"0)5, and k*"0)5. The inset magni"es the range of v* from 0 to 1)4.
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quartic term will overestimate the response about 10-fold when e"0)01. The
di!erences from approaches (B) and (C) are negligible even in the high-speed range.
In all cases the amplitude is almost inversely proportional to e. This can be observed
from the inset of Figure 5, which shows the almost linear relations between log v* and
log e.

6.2. ROTATION SPEED

Figure 6 shows the e!ect of rotation speed X* on the steady state de#ection v* for two
slenderness ratios e"0)01 (solid lines) and 0)1 (dashed lines). For e"0)01, approaches (B)
and (C) produce almost the same results when X*(0)7. However, they are good
approximations to the solution from approach (A) only when X*(0)2. In particular,
approaches (B) and (C) overestimate the amplitude 10-fold compared to the one
predicted by (A) when X*"1. Furthermore, while approaches (B) and (C) predict
a maximum of amplitude around X*"1, approach (A) predicts that the amplitude
continues to grow as X* increases beyond 1. The inset of Figure 6 magni"es the range of v*
from 0 to 1)4. The relations between the results from approaches (A), (B), and (C) for e"0)1
are similar to those for e"0)01, except that the amplitude are about one-tenth of the small
slenderness case. For e"0)1, approaches (B) and (C) approximate approach (A) well when
X*(0)4.

6.3. SLIDER MASS

In Figure 7 we show the e!ect of slider mass on the steady state extension of the
connecting rod during a crank rotation period at high speed X*"0)8. Approach (A) is
adopted for four di!erent values of m*

s
, i.e., 0, 0)5, 1, and 2. Other parameters are a*"0)1,



Figure 7. Extension d* of the connecting rod as a function of crank position h for various values of m*
s
. X*"0)8,

e"0)01, a*"0)1, k*"0)5.

Figure 8. Extension d* of the connecting rod as a function of crank position h for various values of m*
s
. X*"0)1,

e"0)01, a*"0)1, k*"0)5.
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e"0)01, and k*"0)5. The dimensionless extension d* of the neutral axis of the connecting
rod is de"ned and calculated as
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,x*)2D dx*

"e2u*(1)#
e2
2 P

1

0

(v*
,x*)2 dx*. (40)



DYNAMIC ANALYSIS OF FLEXIBLE SLIDER-CRANK MECHANISM 399
d is the extension with dimension. It is interesting to note that while larger slider mass tends
to induce longer extension or contraction of the neutral axis, there exist two crank positions
at which the extension of the neutral axis is independent of the slider mass. These two
positions are h"106)4 and 295)23 in Figure 7. A closer examination reveals that at these
two positions both u*(1) and v*(1) are zero and the extension is contributed entirely
from the second term of equation (40). Generally speaking, the slider position of the
#exible mechanism is slightly di!erent from the one predicted by rigid-body kinematics.
However, there are two positions at which the slider position predicted by #exible
mechanism theory happens to be the same as the one predicted by rigid-body kinematics. It
is these two positions at which slider mass has no e!ect on the extension of the connection
rod.

Figure 8 shows the extension for the low-speed case X*"0)1. In this case, the
contribution from the second term in equation (40) is much smaller compared to
the contribution from the "rst term. The extension diagram is almost symmetric about the
position h"1803. The two positions at which extension is independent of slider mass
are h"86)43 and 2793. At these two positions the transmission angle between the rigid
crank and the connecting rod is almost 903.

7. CONCLUSIONS

In this paper we use the "nite element method to analyze the dynamic response of
a slider-crank mechanism with #exible connecting rod. In the "nite element formulation we
retain all the high order terms in the strain-energy function. This approach results in
non-linear equations of motion. The Newmark method is then adopted to calculate the
transient as well as steady state responses. The e!ects of neglecting the high order terms in
previous research studies of others are examined closely. Several conclusions can be drawn
as follows:

(1) In the low-speed case X*(0)2, the non-linear approach converges as quickly as the
conventional simpli"ed approaches. Furthermore, neglecting high order terms will not
produce signi"cant errors in predicting the dynamic response.

(2) As the rotation speed increases, the non-linear approach requires more elements to
achieve satisfactory convergence. More importantly, conventional approaches
neglecting the high order terms begin to induce noticeable errors when X*'0)2. This
error is more signi"cant for links with small slenderness ratio.

(3) The extension and contraction of the connecting rod are much more dramatic for
the high-speed case than for the low-speed one. As expected intuitively, the larger
slider mass will have a more signi"cant e!ect on extension. However, there exist two
crank positions at which the extension of the connecting rod is independent of the slider
mass.

In summary, we found that the conventional approach, neglecting high order terms in the
"nite element formulation for #exible mechanisms may be inadequate when the rotation
speed is comparable to the fundamental natural frequencies of the #exible links. Retaining
all high order terms will result in non-linear equations of motion, which certainly require
more computation e!orts. This is, however, a price that has to be paid in order to obtain
correct results in high-speed applications.
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APPENDIX A

We "rst de"ne
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The shape functions for displacements u, v, and t are then
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APPENDIX B

The matrices and vectors in equation (17) are
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u
NT#MN

v
NMN

v
NT)#oI (MNtNMNtNT) dx, (B1)

[m
2
]"P

l

0

oA/Q 2 (MN
u
NMN

u
NT#MN

v
NMN

v
NT)#oI/Q 2(MNtNMNtNT) dx, (B2)

Mm
3
N"P

l

0

oA(ahQ cos(h#/)MN
v
N!/Q x

0
MN

v
N!/Q xMN

v
N

!ahQ sin(h#/)MN
u
N)!oI/2MNtN dx, (B3)

Mm
4
N"P

l

0

oA(!ahQ /Q sin(h#/)MN
v
N#/Q 2x

0
MN

u
N#/Q 2xMN

u
N

!ahQ /Q cos(h#/)MN
u
N) dx, (B4)

where x
0

is the x-co-ordinate of the ith node. The matrices in equation (18) are

[k
uu

]"P
l

0

EAMB
u
NMB

u
NT dx, (B5)

[ktt]"P
l

0

EIMBtNMBtNT dx, (B6)

[k
Pvv

]"P
iP

l

0

MB
v
NMB

v
NT dx, (B7)

[k
vvvv

]"
1

4 P
l

0

EAMB
7
NMB

7
NTMqN

i
MB

7
NT MqN

i
MB

7
NT dx, (B8)

where

P
i
"EAMB

6
NTMqN

i
, (B9)

MB
6
N"

d

dx
MN

6
N, (B10)

MB
v
N"

d

dx
MN

v
N, (B11)

MBtN"
d

dx
MNtN. (B12)
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The matrices and vectors in equations (27)} (29) are de"ned as

[m
s1

]"m
s
(MN

u
NMN

u
NT#MN

v
NMN

v
NT )f/1

, (B13)

[m
s2

]"m
s
/Q 2 (MN

u
NMN

u
NT#MN

v
NMN

v
NT )f/1

, (B14)

Mm
s3

N"m
s
(!ahQ /Q cos(h#/)MN

u
N!ah0 /Q sin(h#/)MN

v
N#/Q 2¸MN

u
N)f/1

, (B15)

Mm
s4

N"m
s
(ahQ cos(h#/)MN

v
N!ah0 sin(h#/)MN

u
N!/Q ¸MN

v
N)f/1

. (B16)
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